Received 23 November 2005

Accepted 13 February 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Yi Wang,^a Jun Wan,^b Xue-Mei Li,^b Chun-Li Li^b and Shu-Sheng Zhang^b*

^aSchool of Materials and Environment Science, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.108 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(4-Chlorobenzoyl)-2-(1*H*-1,2,4-triazol-1-yl)ethyl morpholine-4-carbodithioate

In the title compound, $C_{16}H_{17}ClN_4O_2S_2$, molecules are linked into chains along the *c* axis by $C-H\cdots O$ intermolecular interactions and further connected into a three-dimensional framework by other $C-H\cdots O$ interactions. The packing is stabilized by $C-H\cdots \pi$ and $\pi-\pi$ interactions.

Comment

Many triazole compounds have good fungicidal and plantgrowth-regulating activities (Xu *et al.*, 2002). Morpholine derivatives, an important type of fungicide, have attracted much interest because of their inward absorbent and broadspectrum activities (Badioli *et al.*, 2001). In a search for new compounds with high bioactivity, the title compound, (I), was synthesized.

In the non-planar molecule, the orientation of the three rings is determined by the sp^3 hybridization state of atom C8. The two aromatic rings make a dihedral angle of 81.1 (1)°. The morpholine ring adopts a chair conformation.

In the crystal structure, molecules are linked into chains along the *c* axis via $C-H \cdots O$ hydrogen bonds (Fig. 2). The chains are further connected into a three-dimensional framework by other $C-H \cdots O$ interactions. The packing is stabilized by $C-H \cdots \pi$ (Table 2) and $\pi - \pi$ interactions involving the benzene rings. The shortest distance between the centroids of neighbouring benzene rings is 3.700 (2) Å [$Cg \cdots Cg(-x,$ 1 - y, 2 - z) where Cg is the centroid of the triazole ring].

Experimental

© 2006 International Union of Crystallography The t All rights reserved (Wan

The title compound was prepared according to a literature method (Wan *et al.*, 2005). Single crystals suitable for an X-ray diffraction

organic papers

study were obtained by slow evaporation of an ethyl acetate-ethanol (1:3 v/v) solution over a period of one week.

 $D_x = 1.418 \text{ Mg m}^{-3}$

Cell parameters from 3432

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4 - 24.1^{\circ}$ $\mu = 0.45~\mathrm{mm}^{-1}$

T = 293 (2) K

Block, pale yellow

 $0.26 \times 0.19 \times 0.05 \text{ mm}$

 $= 1/[\sigma^2(F_o^2) + (0.0501P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

C16H17ClN4O2S2 $M_r = 396.91$ Monoclinic, $P2_1/c$ a = 16.8253 (15) Åb = 7.4853 (7) Å c = 14.8743 (13) Å $\beta = 97.171 \ (1)^{\circ}$ V = 1858.7 (3) Å³ Z = 4

Data collection

Siemens SMART 1K CCD area-3648 independent reflections detector diffractometer 2997 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.024$ $\theta_{\rm max} = 26.0^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -20 \rightarrow 20$ $T_{\rm min}=0.893,\ T_{\rm max}=0.978$ $k = -9 \rightarrow 9$ $l = -18 \rightarrow 14$ 11068 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.05)]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	+ 0.6924P]
$wR(F^2) = 0.108$	where $P = (F_0^2 + 2)$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3648 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cl1-C3	1.738 (2)	O1-C7	1.208 (2)
S1-C12	1.781 (2)	C7-C8	1.537 (3)
S1-C8	1.819 (2)	C8-C9	1.522 (3)
S2-C12	1.661 (2)		
C9-C8-C7	113.15 (17)	C7-C8-S1	104.56 (14)
C9-C8-S1	108.31 (14)		

Та	b	le	2
----	---	----	---

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	0.00	a 15	a a a f (a)	4.50
$C4 - H4A \cdots O1^{4}$	0.93	2.45	3.285 (3)	150
$C9-H9A\cdots O2^{ii}$	0.97	2.53	3.412 (3)	150
$C13-H13A\cdots Cg1^{i}$	0.97	2.89	3.656 (3)	137

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 2. Cg1 is the centre of gravity for the triazole ring.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-04-

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A view down the b axis, showing the chains along the c axis. Hydrogen bonds are indicated by dashed lines.

0649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Badioli, M., Ballini, R., Bartolacci, M., Bosica, G., Torregiani, E. & Marcantoni, E. (2001). J. Org. Chem. 67, 8938-8942. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (1997). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Wan, J., Li, C.-L., Li, X.-M. & Zhang, S.-S. (2005). Acta Cryst. E61, 02426– o2427.
- Xu, L.-Z., Jiao, K., Zhang, S.-S. & Kuang, S.-P. (2002). *Bull. Korean Chem. Soc.* **23**, 1699–1701.